La ricerca in 3 minuti | Giornata verde del dottorato @DISTAL **multicampus**

Skills for sustainable, resilient, and socially fair communities

UNIVERSITÀ DI BOLOGN DIPARTIMENTO DI SCIENZE E TECNOLOGIE AGRO-ALIMENTARI

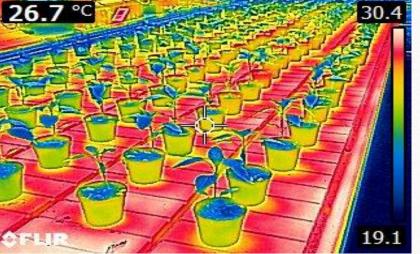
3-11 June 2023 **#EUGreenWeek PARTNER EVENT**

Making Crop Production Process Greener Using Computer Simulations

Supervisor: Dr. Marco Bovo

Goals:

- To understand the complex interaction between crops and their microclimate within a greenhouse.
- To utilize computer simulations and wind tunnel measurements to optimize crop growth and resource usage.
- To develop sustainable and eco-friendly methods for enhancing crop production while minimizing the ecological footprint.


Main Outcomes:

- Accurate modeling and simulation of the microclimate within a greenhouse.
- Optimization of greenhouse configurations, ventilation strategies, and irrigation systems for maximum crop productivity.
- Reduction in resource waste and increased efficiency in crop production.

Novel Aspects of the Research:

- Study of Plant Behavior.
- Consideration of Thermal Comfort.

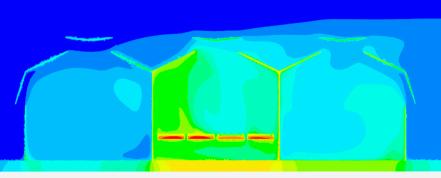
Wind Tunnel Measurements and Aerodynamic Characteristics of Crops

- Conducting wind tunnel measurements to understand the aerodynamic properties of crops.
- Determination of drag coefficient and leaf area density (LAD) to assess cropairflow interaction.
- Wind tunnel data used as inputs for accurate computer simulations of crop behavior.

Computer Simulations

Experimental Measurements in the Greenhouse in Imola

- Sensors and instruments placed to measure temperature, humidity, air velocity, and other relevant parameters.
- Weather station at the top of the greenhouse provided data of solar radiation, wind speed, and wind direction.


Utilizing Computational Fluid Dynamics (CFD)

- (CFD) is a powerful tool for simulating microclimate parameters within a greenhouse.
- Simulating various scenarios based on experimental data, we can identify the most effective greenhouse configurations.

Temperature (C) 19.545 20.541 21.537 22.534 23.530 24.526 25.522 26.518 27.514 28.510

Impact on production world and society

- Identify the ideal conditions for crop growth.
- Resource Optimization.
- Improved Decision-Making.
- Reduced Environmental Impact
- Crop Quality and Consistency.
- Designing Sustainable Greenhouses.

